Технические решения теплоизоляции резервуаров

Задача хранения нефти в резервуарах является важной и актуальной для целого ряда отраслей - нефтедобывающей, энергетической, машиностроительной и др. Как правило, нефть и нефтепродукты хранятся в металлических резервуарах, причем время хранения может быть весьма длительным. В связи с этим задача хранения нефти в резервуарах приобретает ряд подзадач, обусловленных физическими и химическими свойствами нефти. Одной из таких подзадач является теплоизоляция вертикальных резервуаров. Принимая во внимание тот факт, что температура замерзания нефти лежит в диапазоне от -60 градусов Цельсия до +30, а ее кипение может начаться уже при +28 градусах (в зависимости от состава), требования к поддержанию температуры внутри резервуара оказываются весьма жесткими. Кроме того, задача теплоизоляции существенно усложняется в местах добычи нефти с суровыми и часто экстремальными природными условиями.

Для решения задачи теплоизоляции резервуаров широко используются ряд материалов и конструкций, которые могут отличаться в зависимости от природных условий и иных факторов. В качестве теплоизоляционных материалов, как правило, применяют полиуретан, минеральные плиты, пеностекло и др. При этом в сложных климатических условиях эксплуатации наиболее подходящим оказывается пеностекло. Это связано с тем, что данный материал не изменяет своих теплоизоляционных и механических свойств в очень широком диапазоне температур и влажности. Важным фактором является также то, что пеностекло является негорючим материалом. Учитывая высокую пожароопасность резервуаров с нефтью и нефтепродуктов, данное свойство играет существенную роль при выборе материалов и способов теплоизоляции.

Известны различные технические решения теплоизоляции резервуаров.

Известно использование блоков ячеистого стекла, покрытых слоем частиц вермикулита, в качестве нагружаемой изоляции днища резервуаров (для хранения сжиженного газа), что обеспечивает более высокую устойчивость к нагрузке на сжатие.

Известен способ изготовления криогенного резервуара, включающий заливку и отверждение бетонного фундамента, на который устанавливают множество блоков ячеистого стекла. Сверху на блоки наносят выравнивающий слой бетона и после его отверждения устанавливают донную пластину и осуществляют монтаж внутреннего резервуара и наружной оболочки. Кольцевой зазор между внутренним резервуаром и наружной оболочкой заполняют перлитом.

Известен способ изготовления теплоизоляционного покрытия на основе блоков пеностекла, выполненных в форме уплощенной призмы. Для крепления блоков из пеностекла к основанию защищаемой конструкции и между собой использована жидкая керамическая теплоизоляция.

Однако в известных технических решениях не предусмотрены конструктивные элементы, компенсирующие деформации стенки защищаемой конструкции при ее эксплуатации. При возникновении деформаций стенки резервуара велика вероятность разрушения теплоизоляционного слоя. Кроме того, решения не обеспечивают быстрого доступа к поверхности резервуара для его технического обслуживания и ремонта.

Известен способ изготовления изолированной стеновой системы, который может найти применение для теплоизоляции промышленных сооружений. Теплоизоляцию осуществляют с помощью теплоизоляционных блоков из любого изолирующего материала, известного в данной области, включая, но не ограничиваясь следующими: полистирол, полиуретан, полиизоцианурат, их смеси и др. Изготовление стеновой системы включает установку множества металлических обрешетин, установку наружных панелей, каждую из которых крепят к металлическим обрешетинам с образованием наружного настила, установку теплоизоляционных блоков между металлической обрешетиной и наружной панелью с планкой между теплоизоляционным блоком и наружной панелью, снабженной выступом, закрепляющим теплоизоляционный блок и уменьшающим взаимные боковые перемещения теплоизоляционного блока и планки, при этом наружную панель, планку и теплоизоляционный блок скрепляют с металлической обрешетиной с помощью крепежа. В качестве наружных панелей используют, в том числе, стальные листы. Для крепления блоков дополнительно может быть использован клеевой слой между блоком и металлической обрешетиной, облегчающий сборку изолированной стены и удерживающий блок на месте пока осуществляют крепеж. В качестве клея могут быть использованы контактные клеи, реактивные клеи (например, эпоксидная смола, акрилат и т.д.), чувствительные к давлению клеи, клеи-расплавы, и т.п.

Недостатком данного технического решения является избыточная жесткость конструкции, которая может приводить к разрушению жесткого теплоизоляционного материала при деформациях стенки резервуара в процессе его эксплуатации.

Наиболее близким к заявляемому техническому решению является способ монтажа теплоизоляции резервуара, который включает жесткое крепление на корпусе резервуара опорных элементов в виде горизонтально расположенных бандажей с последующей установкой на них облицовки и теплоизоляционных панелей, при этом бандажи выполняют в виде уголков, закрепляют на корпусе резервуара с помощью предварительно смонтированных на нем опор и располагают по высоте корпуса на расстоянии 2,0-4,0 м друг над другом, после чего на бандажах закрепляют облицовку, а в зазор между ней и стенкой резервуара устанавливают теплоизоляционные панели в виде полужестких минераловатных или шлаковатных блоков, причем монтаж теплоизоляции осуществляют секционно по всей высоте резервуара с подмостей, смонтированных с возможностью перемещения.

Однако данный способ теплоизоляции не обеспечивает достаточной прочности и безопасности теплоизоляции резервуара при нагрузках, обусловленных наливом и сливом сырья, а также климатическими факторами.